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We investigate uncertainty propagation in the context of high-end complex simulation codes, whose run-
time on one configuration is on the order of the total limit of computational resources. To this end, we
study the use of lower-fidelity data generated by proper orthogonal decomposition-based model reduc-
tion. A Gaussian process approach is used to model the difference between the higher-fidelity and the
lower-fidelity data. The approach circumvents the extensive sampling of model outputs – impossible in
our context – by substituting abundant, lower-fidelity data in place of high-fidelity data. This enables
uncertainty analysis while accounting for the reduction in information caused by the model reduction.
We test the approach on Navier–Stokes flow models: first on a simplified code and then using the scal-
able high-fidelity fluid mechanics solver Nek5000. We demonstrate that the approach can give reasonably
accurate while conservative error estimates of important statistics including high quantiles of the drag
coefficient.

Keywords: uncertainty quantification; model reduction; proper orthogonal decomposition; Gaussian
processes; kriging

2010 AMS Subject Classifications: 60G15; 62P30; 34C20

1. Introduction

Major tasks of modern science and technology require the use of numerical simulations of
physical systems to augment the rare and expensive experimental data. The current state of devel-
opment of hardware and computing techniques enables models of high geometric resolution
and physical fidelity, with a large number of parameters taken into account by simulation. The
analysis tasks for such models require increasingly large amounts of computational and devel-
opment resources. In turn, this requirement makes black-box-type, sampling-based uncertainty
propagation a computationally demanding task.

Moreover, the situation in a discovery mode or for simulation of prototypes is even more
restrictive. In such cases, past data has less relevance while the aim is to push the limit of resolution.
In turn, this will typically result in computational requirements for one analysis being at the limit
of availability, leaving an even smaller percentage of computational time available for uncertainty
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2 O. Roderick et al.

analysis. As a result, in many fields, such as nuclear engineering, fluid dynamics, or climate
modelling, we may be approaching the situation in which assessment of models of meaningful
complexity using traditional sampling-based methods is no longer feasible.

Our main focus is propagation of uncertainties (resulting from measurement errors, simplifi-
cations, and discretization in the model setup and inherently unmeasurable quantities) from the
inputs and parameters of the model to an output of interest. The existing work on the subject mainly
follows the same scheme, called, variously, surrogate modelling, response surface learning, or
multivariate regression.

An uncertainty-influenced output is fitted to an a priori chosen algebraic structure on the inputs,
based on extensive sampling, or exploration of the uncertainty space by multiple evaluations of
the code. Considerable development has gone into advanced sampling methods, while relatively
little is suggested for the situation when sampling is very limited. And yet, if a simulation code
takes hours to days to complete on a high-performance machine, as is the case for some of the
domain areas and complex simulation contexts described above, the number of times a simulation
can reasonably be repeated for the same geometric and physical setup will be easily exceeded by
the size of sampling required to explore the uncertainty space.

1.1 Using lower fidelity models in uncertainty assessments

Given these restrictions, we posit that perhaps the only possible way to carry out such an assessment
is by using a lower-fidelity model that takes less time to run.

We note the distinction between a regression-based model and a lower-fidelity model obtained
by simplification of the full model’s structure.A regression-based model (a ‘data-driven’emulator)
is a result of fitting a pre-determined algebraic strucutre to a set of known full model outputs. A
simplified model is a result of accessing the full model’s internal structure, and revising it to reduce
complexity and computation time, while preserving the essential properties. The computational
cost of evaluating lower-fidelity models is expected to be very small, although higher than that of
a regression-based model.

Opportunities for simplification appear in multiple guises. For a start, simulation models do
not exist alone, as sole examples in their class of codes. In the process of development, simplified
versions of the code will exist that are mostly consistent in the input-output format, but run much
faster because of lower resolution, lower precision requirements, and fewer enabled routines. If
such simpler versions are no longer accessible, it is possible to simplify the full model’s structure
manually or in a semi-automatic manner. In either case, model simplifications and approximations
are used a as a rough tool to explore the model, either as direct replacements for the source of the
more expensive data, or a a source of first guess at the model’s properties. Empirically justified
use of model simplifications for intermediate verification is unavoidable in applied studies, if not
always documented. The consequences of simplification are tolerated as long as the essential,
global properties of the model are preserved.

Kennedy and O’Hagan [16,17] suggested that a statistical model should be constructed to
describe the imperfection in the cheaper data. Using this statistical model together with cheap
outputs of lower-fidelity models, one can estimate the uncertainty effects at much lower cost. The
premise of the work presented here is somewhat different. While Kennedy and O’Hagan discuss
the use of error-prone computer simulations together with perfect physical observational data, we
will be combining outputs of effectively the same computer code at multiple levels of fidelity.
We aim to demonstrate that the approach is effective even for very complex simulation codes.
While practical demonstration requires overcoming technical difficulties that are not encountered
in study of simpler examples, the main mathematical approach is sound, and can be adjusted to
new situations – in particular, to a very limited computational budget.
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International Journal of Computer Mathematics 3

1.2 Our work

In our high-performance context, however, we may be in the regime where such low-fidelity mod-
els are scarce in a discovery context. One thus runs into the interesting question of whether such
a model can be created directly from the high-fidelity code, in some holistic manner. To this end,
and as we are interested in dynamical systems, we investigate whether proper orthogonal decom-
position (POD)-based model reduction [14] is a suitable choice and we shall use it in our work.

The approach is known, variously, as the principal component analysis (PCA) method, POD
method, and method of snapshots. It has been restated for applied tasks of simulation and optimiza-
tion in high dimension by several authors [27,28]. Additional attention was given to developing
goal-oriented reduced models; the techniques range from simple data weighting to iterative pro-
cedures resulting in a POD-reduced model that optimally reproduces a known feature in the full
model dynamics [6,24]. In engineering fields, multiple researchers use POD-reduced models in a
straightforward manner to replace the full model and cheaply propagate model dynamics forward
in time. The key conceptual appeal, which we will not explore here in detail, is that our approach
can in principle approximate the dynamical system arbitrarily well.

Multiple research efforts have encountered the situation where, due to problem size, complexity,
and dimension of the parameter space, large-scale sampling of the simulation model is not feasible.
In response, a lot of recent work is done on the use of lower-fidelity models, in particular, reduced
models, for uncertainty propagation [3,11–13,20]. There are many advantages to using a reduced
model: it is often easier to manipulate to introduce uncertainty, faster to evaluate, the reduction
of state dimension leads to a natural way to reduction in the dimension of the parameter space.
However, most if not all of the existing work is set in the situation where full model data is
abundant, and a very good reduced representation can be created. We are operating in conditions
where there may not be enough data to create a POD model that is valid anywhere except a very
small region in the parameter space. We cannot trust the model outputs to be effectively equivalent
to full model outputs outside of that region, nor can we cheaply estimate its boundaries, therefore
we are using a procedure that accounts for the error introduced by reduction.

In principle, the error introduced by reduction can be estimated using several runs of the POD-
reduced model followed by estimates of the residual on the full model (but not fully converged
high-fidelity simulations), based on the Kenney–Laub approach [18]. Kenney and Laub introduced
the small-sample condition estimate method for matrix and vector operations, based on using
random vector products uvT as predictor for the vector norm ‖u‖2. Homescu and Serban [15] used
this approach to develop error analysis for perturbed, POD-reduced ordinary differential equations
(ODEs) and partial differential equations (PDEs); the technique requires a small, dimension-
independent number of adjoint evaluations of the model. The (a posteriori) error estimation is,
arguably, the most effective available tool for assessment and control of POD-reduced models
performance.

Such estimates can in principle be exploited in uncertainty analysis and would quite possibly
result in an additional way to reduce the number of expensive full-model runs. However, as we aim
primarily to produce a proof of concept for a code of engineering relevance and as the development
efforts are not trivial, we focus our efforts on the simpler approach of using a limited number of
calibration experiments to estimate the POD model error.

Our choice of POD is based on two facts. First, POD has proved to be an excellent model reduc-
tion technique for many dynamical systems. Second, among intrusive techniques, it seems to be
one of the most practical techniques to implement. We have had some conceptual success with
derivative-enhanced surrogates that, in principle, can be used to similar ends [21,25]. However,
implementation of gradient and adjoint methods, while greatly assisted by automatic differentia-
tion [1], requires considerable effort and expert knowledge. The situation is similar with intrusive
Galerkin methods.
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4 O. Roderick et al.

Given the fact that POD methods are composed of fairly standard forward steps (one model
run plus PCA followed by an evolution of the projected equation) we believe that it is the simpler
of the approaches mentioned and thus is more likely to achieve engineering acceptance. The
question to be answered, however, is whether it is still suitable for uncertainty quantification, that
is, whether, it also captures parametric dependency well.

Given the novelty of this question and the complexity of the problem tackled, we will not aim to
characterize this situation theoretically or comprehensively. Rather, we will try to identify a model
problem where this can be answered positively. On the other hand, to enter the area of engineering
relevance and address issues of complexity of implementation of this intrusive approach, we will
do so for a non-trival problem class and code.

As benchmark problems to validate our approach, we will concern ourselves with Navier–
Stokes channel flow models in the presence of geometric uncertainty. Moreover, we will carry
out the analysis using a high-end fluid dynamics code, Nek5000 [10], a highly complex scalable
computational fluid dynamics solver that cannot be sampled extensively. A reduced-order solver
that uses Nek5000 intermediate model states (snapshots) has been developed recently for extrap-
olation over time and recovery of the full-dimensional velocity field [22]. We used it, with some
modifications, as our low-fidelity model.

The idea of using lower-fidelity data, with additional statistical models characterizing the imper-
fection, properly belongs to Kennedy and O’Hagan [16,17]. Their characterization methods are
based on standard Bayesian reasoning and Gaussian processes (GPs) for machine learning. We
followed their essential framework, with implementation details for GPs as recommended by
Rasmussen and Williams [23]. Combined with our recent insights from GPs analysis [21], this
approach creates an uncertainty analysis tool, as described in Section 2.

The paper is organized as follows. In Section 2 we provide technical details for the components
of the approach: POD-based dimensionality reduction, Gaussian processes-based calibration, and
their combination used to recover model statistics from calibrated lower-quality data. In Section 3
we describe the Navier–Stokes models and the methodology we used to test the performance
of the method. In Section 4 we present the results of numerical experiments. We discuss the
results in Section 5. In Section 6 we review the performed work and suggest directions for future
development.

2. Method description

We now provide technical details about the main components of the proposed approach. We then
summarize the algorithm used for generation and calibration of lower-fidelity data.

2.1 POD-based model reduction

Given a static data set of n′ observations, represented as a matrix A ∈ R
n×n′

, an optimal approx-
imation Â of fixed rank k < n can be expressed by using singular value decomposition. If
A = ∑n

i=1 uiσivT
i , with singular values σi in descending order, then Â = ∑k

i=1 uiσivT
i ; the error

‖A − Â‖2 = ∑n
i=k+1 σi is minimal for the given k. In practice, the dimension k is chosen so that

the relative eigenvalue energy error
∑n

i=k+1 σi/
∑n

i=1 σi is close to 1.
According to the method of snapshots [27], a similar technique can be used to reduce the

dimensionality of dynamically evolving data; the projection is applied to the underlying model
equations. Suppose that a number of observations (or snapshots) from a single solution trajectory
at times t1, t2, . . . , tn′ are recorded as matrix columns: A = (T(t1), T(t2), . . . , T(tn′)). An empirical
correlation matrix is defined as C = A · AT. In practice, instead of a singular value decomposition
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International Journal of Computer Mathematics 5

of A we solve an eigenvalue problem

Cφ = λφ. (1)

Then the k dominant eigenvectors are recorded as � = (φ1, φ2, . . . , φk). Often, n′ << n, and
it is more convenient to solve an equivalent problem AT · Aφ′ = λ′φ′; then λi = λ′

i and φi =
(1/

√
λi)Uφ′

i .
The matrix� is used to project the model dynamics into a dominant eigenspace of the correlation

matrix. This projection is optimal for the training data. If training data is representative of the
model dynamics, and if true model dynamics are essentially low dimensional, then it is expected
that the POD approximation of the model state trajectory u(t)

û(t) =
k∑

i=1

φi(t)qi(t) (2)

is effective, û(t) ≈ u(t). Here, q(t) is the approximating trajectory in low-rank subspace coordi-
nates (a shift term μ, corresponding to the average of snapshot values, is sometimes added here;
we set μ = 0 to simplify the explanation). POD-based projection can be used for many formats
of the problem.

For practical purposes it is sufficient to describe a model discretized to an ODE. Consider the
system

du

dt
= f (u, t, P, x),

u(t0) = u0(P, x),
(3)

where u(t) is the model state at time t, P are the modelling parameters, and x are generic quantifiers
of the uncertainty. We accept any forms in which uncertainty can be introduced into the model.
The independent quantities x can be dimensionless (for example, multiplicative errors in measure-
ment of paramters), have physical meaning (additive errors), represent programmers’ decisions
in discretization of the model, or be a mixed set of all the above. We also allow hierarchical
relationships that include uncertainty, for example, in the form P := P(u, t, x) [25].

We collect the snapshots A = [u(t1), u(t2), . . . , u(tn′)] and solve (1). Once � is defined, the
reduced-order approximation to the model solution, written as û(t) = �q, is determined by solving

dq

dt
= �Tf (�q, t, P, x),

q(t0) = �Tu0(P, x).
(4)

The main advantage to using the reduction is the reduced integration time in comparison with
that of the full model equations, especially for well-reducible problems with k � n. If needed,
adjoint differentiation of the reduced model is also computationally cheaper.

Note that q and u are functions of both time and parameters, q ≡ q(t, x) and u ≡ u(t, x),
although we may choose to expose the one on x only implicitly at times. In this framework, we
can state one of the main aims of our study: determine in our case whether the random variable
u(t, x) induced by the probability density on x defined by the uncertainty analysis can be well
approximated by the random variable �q(t, x). This will allow for statistics of u to be computed
based on the much cheaper statistics of q.

Representation of the reduced model as (4) may be misleading: as written, it appears that the
right-side function f is evaluated in the full-dimensional space R

n. This could be ineffective.
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6 O. Roderick et al.

In practice, the expression �Tf (�q, t, P, x) is explicitly known and can be simplified so that all
computations are performed in R

k .
Consider the Navier–Stokes PDE

∂u

∂t
+ (u · ∇)u − 1

Re
�u + ∇p = 0

∇ · u = 0.
(5)

The reduced-model solution is an expansion û(x, t) = u0(x) + ∑
i=1 kqi(t)φi(x) with an additional

inner-product assumption (∇p, φi) = 0. The POD-Galerkin representation of the reduced model
is written as

(
∂ui

∂t
, φi

)
+ ((ui · ∇)ui, φi) +

(
2

Re
D(ui), ∇φi

)
= 0, i = 1, 2, . . . , k, (6)

and integrated in the form of the reduced-order ODE

dqk

dt
= Aijkqiqj + Bikqi + Ck . (7)

The resulting bilinear nature of (7) is an immediate consequence of the bilinearity of the
Navier–Stokes equations. The arrays A, B, C are assembled from terms of the Navier–Stokes
operator multiplied by φi φi · (−(u · ∇)u + (1/Re)�u) with substitution u = �q. The results of
the substitution can be bulky, for example Ci = (du0/dx)u · φui + (du0/dy)v · φui + (dv0/dx)u ·
φui + (dv0/dy)v · φui + ∇u0 · φui + ∇v0, φvi (where u, v are the components of velocity in axial
directions x, y, φu, φv are corresponding subvectors of a complete eigenvector φ = (φuφv)

T). Nev-
ertheless, the derivation of terms is a straightforward exercise, performed in the same way for any
right-side function f .

The parameters x are present in the arrays A, B, C, and in many circumstances this dependence
can be recovered analytically; but a complete practical framework is difficult to derive and present.
We thus decided not to represent it explicitly or exploit its structure at this time, although that is
definitely a most intriguing endeavour in the long run. Nevertheless, all changes that can be made
to the parameters of the full model (to the initial state of the model, to intermediate parameters
on the right side of the ODE, to the geometric grid on which the original PDE is approximated
by an ODE) will also influence the obtained reduced model in some form, and that is sufficient
to allow us to investigate the aim stated above.

If the model is not reducible (i.e. its essential dynamics cannot be described in just a few
evolving variables), the method suggested here is not applicable. The situation is more ambiguous
when the reduced model can be defined but does not approximate the full model well. This
is usually attributed to an incorrect choice of snapshots or an ineffective POD basis �. The
most straightforward way to improve the reduced model is to enhance the POD basis � by
combining snapshots from trajectories started from several different points in the uncertainty
space. Here, the effective improvement can be limited: a procedure for an improved POD basis will
run into problems of high computational cost and generic circular logic (we cannot emphasize the
response to uncertainty in the reduced model without knowledge about the full model’s response
to uncertainty). Other methods of improvement of the reduced model (such as snapshot weighting)
run into similar limitations: too many diagnostics and revisions are expensive, and no diagnostics
at all leaves us with no information on what features to emphasize in the reduced model dynamics.
For most of our work, we accept the reduced-model data as is and expect that the reduced model
is of sufficient quality; u ≈ û, correspondingly, J ≈ J (û). We have an opportunity to test the
discrepancy of this model on the target functional a limited number of times, and we use this in
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International Journal of Computer Mathematics 7

the GPs approach in Section 2.2. If the fit is bad, we expect that the posterior confidence interval
will be very large, indicating a lack of quality.

We pass the reduced-model data to the next stage of the process: automatic learning of the
difference between full- and reduced-model outputs over the uncertainty space.

2.2 Gaussian-processes based machine learning

A stochastic process [8] is a commonly used tool for representing the dynamics of models with
an indeterminant source of variability. The approach is naturally applied to quantification of
uncertainty. In the language of stochastic processes, an output of interest J follows a statistical
distribution with certain mean and covariance functions μ(x), cov(x, x′). The role of the mean
function can be played (initially, until revision) by any regression model R(x); the variance
structure needs to be additionally fitted to the available data. GPs are a special case of the stochastic
processes , restricted to considering only normal multivariate distributions. This restriction, which
us allows to describe the statistics derived from observations explicitly, is not very limiting for
practical applications, as can be seen from its large use in expressing spatiotemporal and other
multidimensional uncertainty [5,23,26].

At the core, GP machine learning is a response surface method. Unlike commonly used regres-
sion, it involves estimating the shape of the covariance function on the data rather than the shape
of the data itself. Consider a basic task of constructing the GP representation on the training set
of outputs YO corresponding to a set of inputs XO = (xO1, xO2, . . . , xON ) : xOi ∈ R

n.
We denote the covariance function on the inputs by cov(x, x′; θ) : R

n → R. For the algebraic
form of covariance, we use a Matern 3/2 function:

cov(x, x′; θ) = δ2 ·
m∑

i=1

(
1 + √

3

∣∣∣∣xi − x′
i

θi

∣∣∣∣
)

exp

(
−√

3

∣∣∣∣xi − x′
i

θi

∣∣∣∣
)

. (8)

A small number of other suitable covariance functions are available, the most commonly used being
the squared exponential cov(x, x′; θ) = δ2 · ∑m

i=1 exp((xi − x′
i)/θi)

2. We point out, however, that
its use raises some issues about assumptions on the data, and the Matern class is a more conservative
choice that requires less restrictive assumptions about the smoothness of the data process [26]. We
refer to the work of Rasmussen and Williams [23] and also our previous work [21] for a discussion
of the choice between covariance functions. Part of our choice originates in our experience in [21]
that Matern 3

2 is safe and robust; extended studies of the proper classes are certainly necessary in
future work.

The parameter δ2 in the expression can be estimated by var(YO). The hyperparameters θi

are essential in determining the shape of the covariance function. They are chosen to best fit the
training data in the maximal marginal likelihood sense. It is convenient to write out the probability
that YO follows Gaussian distribution with covariance cov(x, x′; θ) in a negative logarithmic form.
The task of fitting the hyperparameters amounts to maximizing the log-likelihood

− log(Pr(YO | X , θ)) = −1

2
Y T

OK−1YO − 1

2
log |K| − n

2
log(2π), (9)

where K = (cov(xi, xj, θ)), xi, xj ∈ XO is the covariance matrix on the training data. The nonlinear
optimization problem itself presents a computational challenge and is not guaranteed to yield an
ideal solution, yet most of our tests and prior work [21] show that the resulting distribution
approximates the uncertainty well. We use standard nonlinear optimization tools (Matlab routines
fminsearch and fminunc are acceptable [19]). Calculating the log-likelihood is straightforward
once the Cholesky factorization of the matrix K is obtained, which is a fairly simple calculation
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8 O. Roderick et al.

unless the dimension n is very large. Given the scarce data nature of our problem, this is not an
issue here. We point out, however, that we have addressed the issue of scalable algorithms for
Gaussian processes elsewhere [2]. The numerical conditioning of the matrix inverse procedure
can be used as a diagnostic for the solution quality; we restart the search with a different initial
guess if K is poorly conditioned.

Once the covariance function is specified, we can perform pointwise predictions on any testing
set XV by Kriging. A cross-covariance matrix relates the testing set to the training set:

KV = (cov(x, x′), θ), x ∈ XO, x′ ∈ XV . (10)

The outputs are predicted as

YV = KT
V · K−1 · YO. (11)

Given the initial (or prior) version of the mean function μ(x), a posterior version of the mean on
the testing set is

μ′(x) = R(XO) + KT
V · K−1 · (YV (x) − μ(x)). (12)

A posterior prediction for the variance is given by

V(x) = var(Y(xi)) = δ2 · (cov(xi, xi; θ) − KT
V · K−1 · KV ). (13)

The estimate (13) provides confidence information for pointwise predictions. The effectiveness
of this estimate depends on how well the underlying assumptions for Kriging are satisfied by the
data (or, the training data is of sufficient quality to estimate the variogram correctly [4]).

We now return to the task of uncertainty quantification. We have just formulated a tool that
allows unbiased, locally smooth prediction on training data and provides confidence intervals for
the prediction. We seek to apply it to the situation where training data is some measure of the
difference between outputs of the perfect and imperfect versions of the simulation model. We can
define the training data as

YO = J (u) − J (û), (14)

with u = u(t, P, x), x ∈ XO. and then output the calibrated data as JC(XV ) = Ĵ (XV ) + YV for the
training set of inputs XV , using Equation (11). Confidence intervals are written as

(JC(x) − zV(x), JC(x) + zV(x)), (15)

where z is the appropriate coefficient corresponding to the measure of confidence; for example,
z = 1.645 for 90% confidence using an empirical rule for the Gaussian distribution.

Note that the hyperparameters θ can be interpreted as measures of anisotropy in the data or
rates at which the data correlation decreases with distance in each direction; in principle, they
can all be non-negligible and independent. For some outputs (in particular, for choices of J (T)

that are linear with respect to T ), POD reduction will guarantee a low degree of freedom on
the completentary subspace of dimension n − k, as estimated from the non-dominant eigenvalue
distribution. However, we must also allow for the outputs of interest that are not smooth with
respect to the model state or, in fact, have an unknown effect because they are not explicitly
extracted from the code. Thus, in general, the computational budget required for the prediction
process of the training data (14) will require at least m training points. If such a budget is not
available, we will have to use a different strategy in defining the training data and, correspondingly,
a different expression for the calibrated data. One such alternative, using a weighted training set
of full- and reduced-model outputs without pairwise correspondence between them, is mentioned
in the following section.

We now review the method as it applies to the specific task of uncertainty quantification.
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2.3 Summary of the method

In the most straightforward form, the proposed method consists of three components that are
executed in sequence and can be tuned for improved performance independently of each other
(because feedback and adaptive improvement would require additional model evaluations): POD-
based model reduction, assembly of training data for calibration, and GP-based calibration. We
consider the components step by step.

Model reduction requires collecting snapshots from the model trajectory. Thus the essential
cost of model reduction is at least one full model evaluation. We choose a single point in the
uncertainty space: in the absence of additional information, it may be done randomly, or with all
uncertainty quantifiers given nominal values, e.g. xi = 0, evaluate the model, and record model
state over moderately many time instances.

Singular value decomposition of the empirical correlation matrix C = AAT needs to be
performed only once; only the projection matrix � needs to be stored.

To improve the performance of the reduced model in reproducing the output of interest J (T),
we can use data-weighting techniques. Where possible, we compute or estimate from external
information the magnitudes of sensitivities dJ(T)/dA. This array measures the importance of the
individual model state components (compared along the rows) and of the individual time moments
(compared across the columns). Schematically, the influence of particular state component Tj is
amplified by modifying the eigenvalue problem (1) to the form

�Cφ = �λφ, (16)

where � is the identity matrix with the jth component on the diagonal multiplied by weight w > 1.
The influence of a particular snapshot T(tk) is amplified by modifying (1) to the form

1

w
AWATφ = λφ, (17)

where W is the identity matrix with the kth component on the diagonal multiplied by weight
w > 1. The operations can be repeated and combined, resulting in a dual-weighted POD reduction
procedure [6]. Note that the choice of weights may influence the numerical stability of the resulting
reduced-order model.

Suppose that several full-model runs are available, with projection matrices �1, �2, . . .. They
can be aggregated into the form � = span(�1, �2, . . .); in practice that can be accomplished by a
Gramm-Schmidt orthogonalization procedure. If the computational budget allows estimation of
some of the sensitivites dJ /dx, one can choose directions of interest in the uncertainty space and
sample collections of snapshots along them. Increasing the reduced model dimension k may also
improve the performance of the reduced model over the points in the uncertainty space distinct
from the one where the snapshots were generated.

Overall, while in many cases a small improvement of quality of the reduced model is possible,
we do not expect to be able to do it cheaply and with confidence. Instead, we accept that the
reduced model may be adequate only at a point in the uncertainty space on which the set of
snapshots was generated. Elsewhere, the outputs of the reduced model will be imperfect, but we
cannot afford much analysis or revision of the reduction. Instead, the lower-fidelity outputs are
passed, as is, to Bayesian correction procedure.

By design, the reduced model is cheap to evaluate at any point in the uncertainty space; we
can have samples of almost arbitrary size. Consider the outputs YO on the training set XO and
corresponding testing outputs YV based on XV . In practice, the organization of the full- and the
reduced-model code may differ. For example, the reduced model may have a non-explicit initial
state (using the first snapshot instead) or may use an adaptive geometrical mesh that ends up
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10 O. Roderick et al.

being different from that of the full model. Initial-state uncertainties and geometric uncertainties
are, correspondingly, of different format. It becomes a development task to modify the code or
to interpolate. Notably, the proposed calibration procedure accounts for the differences between
the full and the reduced models without distinguishing their source. The calibration procedure
attempts to make up for interpolation errors as well; the overall quality of prediction may decrease.

In the scope of this work, we do not provide guidance on sampling the parameter space to obtain
training or testing data. In practice, our computational budget is so limited that only very few high-
quality model outputs will be considered, not sufficient to make conclusions about the difference
between sampling strategies. On the other hand, the lower-fidelity model is so cheap it can be
sampled with almost arbitrary density. Thus, we used uniform random sampling everywhere, with
bounds of the region as wide as an applied example allowed.

Use of sampled data to construct the training set begins with interpretation of the ‘difference’
between full and reduced data. Besides the arithmetic difference between outputs, we can use any
correspondence between the perfect and approximate outputs on the same input that could be used
in the calibration process. The only restriction on this generic relationship YO = J (X) ↔ Ĵ (X)

is that it must be reversible, that is, at least locally bijective and smooth.
For the computational budget of full-model runs approximately equal to the uncertainty space

dimension m, we sample full and reduced models in pairs on a training set XO and use YO =
J (u) − J(û). If the budget must be less than m, we can construct an intermediate regression
model r(x) using the available full-model runs only: in practice, r(x) can be a very low-rank least-
squares linear approximation for J (u) = J (u(t, P, x)). Then we can compare full and reduced
models with r(x) instead of with each other. Technically, we define {YO = J (u(t, P, x)) − r(x);
x ∈ XO. The Bayesian calibration procedure will then be a form of interpolation from the nearest
known values of J (u(t, P, x)) and r(x). The quantities r(x) and V(x) are assumed to be statistically
independent. The full-model outputs in this training set can be weighted, that is, repeated multiple
times in the training data for increased influence on the resulting variance structure. This approach
will have a lower quality in pointwise prediction, but it is dramatically (for its computational cost)
successful in recovering the variance.

Ultimately, the choice of the correspondence relationship ‘↔’ involves a tradeoff between
computational cost and quality. On the one hand, the training set YO should require only a few full
model evaluations. On the other hand, the correspondence must be reversible; deciphering of the
predicted values YV into calibrated JC should be performed without significant loss of quality.

GP-based learning of variance structure is treated mostly as a black-box procedure for pro-
ducing the posterior mean μ′(x) and variance V(x) based on training data YO. For improved
performance, we recommend that the values in YO be of the same order of magnitude; the rest of
the process depends on the choice of nonlinear optimization algorithm.

Note that our recovered values JC are technically random variables: we are using the posterior
mean of the GPs, combined with output from the reduced model, as pointwise prediction, and the
variance of the GPs as the measure of confidence in the pointwise prediction.

The scheme of the complete process is shown in Figure 1. We use a general term ‘correspon-
dence’ to describe the many possible relationships between the full and reduced data that could
be used in the process of calibration.

Once the calibration process is complete, we in effect have a cheap source of training data
that comes with an explicit variance function; the computational effort for producing more
data amounts to additional reduced model runs and Kriging. The statistics of the model under
uncertainty can now be assessed by sampling calibrated outputs.

Estimation of confidence intervals for order statistics follows a straightforward approach by
DasGupta [7]. Consider the pth quantile for the distribution of the output of interest J , and
choose a confidence level α (a typical example is the 95/95 estimate: p = 0.95, α = 0.05). A
conditional quantile estimate approach amounts to uniformly sampling JC over the uncertainty
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International Journal of Computer Mathematics 11

Figure 1. Reduced-order model sampling and calibration process.

space and recording the pth quantile for each sample, thus forming a new variable ζp. The required
double-side confidence interval is estimated from the empirical distribution of ζp, that is, from
the empirical distribution function defined on M points by Z(t) = (1/M)

∑M
i=1 1{ζpi < t}; here

1{. . .} is the binary indicator of the event.

3. Demonstration on Navier–Stokes channel flow models

In the development of our approach, we started with a simplified, prototype code for Navier–
Stokes flow in a rectangular channel. With the code that we developed ourselves, it was easier to
avoid the main implementation difficulty: inconsistency between input formats for the reduced
and the full models. Moreover, the reduction and calibration approach we use is largely model-
independent; it can be assessed on simpler models. We shall now explain how the prototype model
was constructed, overview the technical tasks required to apply the approach to a high-fidelity
code Nek5000, and summarize the methodology used in numerical experiments.

3.1 Prototype model

For a prototype code, we used the previously described Galerkin-POD approach. The original
PDE

∂u

∂t
+ (u · ∇)u − 1

Re
�u + ∇p = 0

∇ · u = 0
(18)

is integrated to obtain a set of snapshots. Once the reduction basis � is defined, the reduced-order
ODE is written in the form

dqk

dt
= Aijkqiqj + Bikqi + Ck . (19)
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12 O. Roderick et al.

Figure 2. Velocity field for channel flow with wall bumps.

Physically, the nonlinear coefficient A represents higher-order convective transport between
modes. The linear term B represents the effect of viscosity and the energy transfer with the mean
flow field. The forcing term C represents the coupling between modes and the Reynolds stresses.

Of course, the specific values of A, B, C are completely valid only at a single point in the
uncertainty space, where the snapshots were obtained. To calculate them for any other point, we
would need to rerun the full-dimensional model, or to interpolate the values in the arrays over
the uncertainty space However, this would be just another variation on uncertainty quantification
by extensive sampling, not feasible for complex models at a high dimension of uncertainty.
Instead, to start our inquiry and assess the potential of our method without introducing additional
complicating factors at this time, we use a single reduction as a source of imperfect training data.

We set up an uncertainty quantification problem based on geometric uncertainty. Given a
rectangular channel, we introduced irregularities (convex or concave semi-circles) on one of
the walls.

We show an example of a velocity field in Figure 2 (image created by using a prototype code,
not Nek5000). The radius of each semi-circle is uncertain. The output of interest was the drag
coefficient, averaged over time and over the geometric domain of the model. Formally, a change in
geometric shape of the domain would lead to a change in the dimension of the model state vector;
n and k would no longer be constant. We got around this difficulty by flattening the appropriate
mesh elements to area 0 to represent the non-permeable parts of the domain (bumps). In this
representation, the solutions û(x) and u(x) are of the same dimension for all x.

The configuration, while stylized, is relevant for nuclear engineering. The issue of determining
drag coefficients in this configuration is connected to the pressure drop in a nuclear reactor channel,
which is an important operating characteristic [9].

While the results on the prototype model were very good, we do not give full details here,
reserving most of the discussion for the Nek5000 case; but this was our first confirmation that
one can perform uncertainty analysis using fewer points than the uncertainty dimension m. Such
experiments on simple models are not difficult to reproduce, and we spend most of the following
section on more notable experiments in uncertainty analysis of a very complex, high-resolution
simulation model that Nek5000 embodies.

3.2 Nek5000 models

To demonstrate the performance of the method on a model of industrial complexity, we use
Nek5000 to simulate the same two-dimensional flow in the rectangular channel with geometric
irregularities on one of the walls.
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Nek5000 is an open-source Fortran77/C code based on the spectral-elements method, following
MPI parallelization standards. It implements a high order spectral element method for the Navier–
Stokes equation in about 100 K lines of code and was developed over more than 20 years. It has
won the 1999 Gordon Bell prize for sustained quality of performance and scalability, and it is
one of the typical test codes for new high-end architectures. Approximately 100 specialists in
two dozen institutions actively use Nek5000 for simulation and design projects in and outside the
nuclear engineering field. We are fortunate to work in close cooperation with its development team.

The code has a user-defined component that allows access to the internal variables and allows
a range of customizations of the undelying fluid flow model; geometric mesh can also be edited
directly.

In most cases, full-resolution Nek5000 is not practical to run on an average-performance
machine. Using previous work on POD-based reduction of the underlying advection–diffusion
equation [22], we could treat the full code as a black box that would output the high-dimensional
vectors (velocity and pressure) required to assemble the terms of (7). The lower-fidelity reduced-
order state vectors could be raised to full dimension and submitted to Nek5000 to calculate
aggregate quantities of interest, such as averaged drag coefficient.

Inserting specific values of uncertainty-influenced quantities will always be challenging for
codes of almost any organization, since the developers will not allow complete freedom in
changing the physical or the geometric properties of the model and all computational preci-
sion thresholds. The correct effect of uncertainty on the variables that are defined early in the
computational flow of the model may be hard to define explicitly; the variables that are declared
deep inside the code and late in the computational flow may be completely inaccessible. The
reduced model also adds development challenges. For example, in the POD-reduced version of
Nek5000, the initial conditions and the boundary conditions cannot be edited directly: they are
defined in the reduced-order subspace implicitly within the projection matrix � and the assembled
right-side terms A, B, C.

Note that the two main technical prerequisites for multi-fidelity analysis on a complex code
such as Nek5000 are to establish format consistency for all values of uncertain quantities, and
implement communication between lower-fidelity and higher-fidelity versions of the code. Some
quantities are easier to manipulate in the reduced version of the model; the others are better
represented in the full version. The trade-off between convenience and quality that appears in
development of the method is not trivial: for the method to be effective, one has to decide which
calculations to leave on a high-performance machine, and which to reproduce locally, with lower
precision and higher relative cost.

Codes such as Nek5000 have verification needs in various contexts; physical fluid-flow models
that need to be validated, and engineering designs need to be assessed for safety and productivity
margins. At extreme computational scale, such tasks are very challenging; they have to be sim-
plified by using external information or physical intuition, at least to make the scale of sampling
over the parameter space tolerable. A lot of dedicated work therefore has gone into intelligent
sampling. However, the results of analysis are limited by computational constraints. Some types
of output (in particular, confidence bars for performance statistics) will not be produced at all,
except for the trivial cases. Now that a multifidelity approach is also available through this work,
we may begin to resolve such difficulties and provide verification procedures for such codes.

3.3 Experimental methodology

Our numerical experiments on the prototype code and on Nek5000 are set up in a similar man-
ner. In both cases, we simulate two-dimensional flow in a rectangular channel with geometric
irregularities in the shape of semicircular bumps. We used the default (computationally cheap)
options for POD-based model reduction, and for GP-based calibration, as described in Section 2.
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14 O. Roderick et al.

For the prototype code, we used a channel of dimesions 3 × 10, and m = 4 semicircles of
uncertain radius. POD-based reduction was based on a uniform set of snapshots along the solution
trajectory based on a single point in the uncertainty space with fixed values xi = 0.1 (the point
could also be chosen randomly, leading to very similar results). The runtime of the models was 0 <

t < 1; the drag coefficient was averaged over the time interval 0.25 < t < 1 and over the geometric
domain. For testing purposes, we used random sampling of the uncertainty space, uniformly over
the domain −0.25 < xi < 0.25, with the negative numbers corresponding to concave shapes.

The full model dimension was n = 2000, a reduced model of dimension k = 50 could be
evaluated approximately 20 times faster. For data calibration, we used 2 full-model outputs and
10 reduced-model outputs, assembled into the training set as described in the end of Section 2 (i.e.
both perfect data and imperfect data are compared with the data from an intermediate regression
model).

For Nek5000, we used a rectangular channel of proportions 1 × 10, and uncertainty dimensions
m = 4, m = 20. The runtime of the models was 0 < t < 1; the drag coefficient was measured at
t = 1 and averaged over the geometric domain (averaging over time would have required a lot
of additional model data storage). The full model dimension was n = 20, 000; we used reduction
to a fixed dimension k = 40. POD-based reduction was based on a uniform set of snapshots
along the solution trajectory based on a single point in the parameter space, the point was chosen
randomly. The evaluation of the full code took approximately 40 min, 15 s for the reduced code.
For m = 4, the calibration procedure used either 5 or 3 full model runs, and the testing data was
sampled uniformly over the domain −0.5 < xi < 0.5. We have also performed experiments using
a larger dimension of uncertainty, m = 20 and the smaller range, −0.3 < xi < 0.3. In this case,
the calibration procedure used 20 model runs. As appropriate for preliminary investigation of the
higher-dimensional case, we used a somewhat simplified physical setup for a high number of
geometric deformation; it is better to think of such experiments as performed on an independent
problem. Nevertheless, we find it reassuring to see that with a computational budget of only 20
full-model runs, we are able to recover the global statistics of the model correctly.

4. Numerical results

We now report on some of the tests on our main testing problem: Navier–Stokes flow in a channel
with geometric irregurailties, implemented by the Nek5000 solver. In Figure 3, we compare
pointwise predictions for two calibration strategies on the same randomly selected 80 points:
using 5 points and a Gaussian model trained on pointwise difference between full- and reduced-
model outputs, versus using only 3 points and a Gaussian model trained on a mixed, weighted
set of full- and reduced-model outputs. A cheaper prediction strategy is worse pointwise, and
the confidence interval is less conservative; the important message here, however, is that both
approaches provide effective results at limited computational cost (lower than the cost of linear
approximation on full model data!) Comparing some of the metrics in Table 1, we see that our
estimates cover the test sets at least at the nominal value, and actually better. The latter is a sign
that the method is a bit conservative; but since it is close, and given the application area, we
believe this to be acceptable.

We use the better of the two predictions to look at how well our prediction reproduces the
statistical distribution of uncertainty influnced output. In Figure 4 we compare cumulative dis-
tributions of true and predicted data; in Figure 5, we also present a Q–Q (quantile-to-quantile)
comparison. We see that the distribution is off, showing a nonlinear discrepancy that we do not
capture (and we cannot be expected to capture over four dimensions with five samples). However,
we note that the uncertainty shows a factor of two variation of the drag coefficient over the range
of the uncertainty space, an enormous variation by engineering standards. Moreover, the tails and
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(a)

(b)

True outputs

Predicted outputs
90 % prediction confidence interval

Figure 3. Pointwise predictions for Nek5000 output, also showing 90% confidence interval. (a) Dimension of uncertainty
m = 4, 5 points used. (b) Dimension of uncertainty m = 4, 3 points used.

Table 1. Predictions using calibrated data for Nek5000 with four bumps; two calibration
strategies.

Metric Predic w. 5 points Predict w. 3 points Validating set

Mean 0.5426 0.5345 0.5365
Range 0.4774:0.6733 0.4774:0.6422 0.4721:0.8250
St. deviation 0.0481 0.0543 0.0613
Data within 90% interval 98.5% 95.5% 90%

variability are comparable, and hence the confidence intervals are correct at the nominal value (in
the sense that they cover at least as much percentage of data as stated), as seen from Table 1 and
Figure 3.

We use the calibrated data to obtain the commonly used 95–95 estimate for the output, that is, a
95% double-sided confidence interval for the 95th percentile. The estimate is shown in Figure 6.
The true percentile is within the predicted interval; cumulative distribution of the outputs is also
shown. Once again, we stress that this estimate was obtained with only 5 full-model evaluations;
normally such a task would require sampling hundreds of points.

The limiting factor of the method from our perspective at this time is the difficulty of nonlin-
ear optimization in high-dimensional space, an issue that can be removed by using a Bayesian
framework where the likelihood needs to be computed, but not really optimized, or a linear super-
position Gaussian model. At this moment, however, the feature is not implemented, and for the
case m = 20 this constrained us to taking smaller uncertainties in the geometry in terms of ampli-
tude. At this dimension, the optimization problem within GPs needs to be restarted multiple times
to find an acceptable local minimum. Once this is resolved, the results are consistent with what we
have shown before. Metrics from this experiment are given in Table 2. The quality of pointwise
prediction appears to be good, even for m = 20 (see Figure 7); but we are more interested in the
global metrics comparing the distributions, which we analyse next.

In Figure 8 we show a comparison of cumulative distribution functions.As before, the prediction
by calibrated lower-fidelity data is somewhat conservative, with heavier tails of the distribution. It
is appropriate for engineering tasks focused on not exceeding a certain safety threshold (a common
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Figure 4. Nek5000: four-dimensional uncertainty, cumulative distribution plot.
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Figure 5. Nek5000: prediction for four-dimensional uncertainty, quantile–quantile plot.

setup in nuclear engineering). For another comparison of the predicted and the true distribution,
we present a Q–Q plot in Figure 9; again, note the heavier tails of the predicted distribution. From
the last two graphs we can informally state that our prediction of global statistical properties of
the model is essentially correct and conservative.

In Figure 10, we obtain the 95–95 estimate for the output with 20-dimensional uncertainty:
our confidence interval is placed symmetrically around the true percentile. The results are better
than the m = 4 case; however, we recall that the size of the uncertainty is smaller because of the
difficulties with optimization. This m = 20 case also shows that quantile estimates and confidence
intervals are again correct if a bit conservative. Of course, getting the distribution of the discrepancy
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Figure 6. Nek5000: 95–95 estimate for the drag coefficient, prediction after calibration process on 5 points.

Table 2. Predictions using calibrated data for Nek5000 with 20
bumps.

Metric Prediction Validating set

Mean 0.7299 0.7200
Range 0.7187:0.7223 0.7190:0.7208
St. deviation 0.0054 0.0041
Data within 90% confidence 92% 90%

Figure 7. Nek5000: prediction for 20-dimensional uncertainty.
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Figure 8. Nek5000: 20-dimensional uncertainty, cumulative distribution plot.
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Figure 9. Nek5000: prediction for 20-dimensional uncertainty, quantile–quantile plot.
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Figure 10. Nek5000: 95–95 estimate for the drag coefficient, 20-dimensional uncertainty, prediction after calibration
process on 20 points.

to be exactly normal would be unlikely in any case, so this is not a flaw of the method; and absent
additional information at the time of calibration, no other option seems feasible.

We conclude that for both m = 4 and m = 20 our uncertainty estimates are efficient and correct
in that they cover at least the amount of data specified by the nominal coverage, and the excess
is in the low percentages. So the method of this work is succesfully validated on these examples
using Nek5000 while using only a small number of calibration runs (comparable to m).

5. Discussion

Our numerical experiments show that the introduced approach to uncertainty quantification based
on lower-fidelity data can be effective for a class of flow models, even for such high-resolution
codes as Nek5000. This demonstration addresses a challenging task in uncertainty analysis and
does so at an unprecedented low cost, as measured in computationally expensive evaluations of
the full code. This has implications for the previously inaccessible tasks of code analysis, and
ultimately for engineering tasks of confidence assessment and improvement of performance under
uncertainty.

Based on our experiments, we give the following (informal) characterization of the method’s
performance. For a class of models considered, we constructed an effective representation of
the response to uncertainty at a cost comparable to that of a linear interpolation. That is, the
number of full-model runs required to fit the response can be equal to the dimension of the
uncertainty space. In comparison with the usual costs of running a high-performance model,
the other tasks, such as multiple evaluations of the reduced model and nonlinear optimization
required for Gaussian-processes fitting of covariance, are negligibly cheap. The pointwise quality
of prediction is not remarkable; one could get almost the same, and sometimes even better,
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quality by linear interpolation or just sampling of the reduced model alone. The motivation behind
the method is in the capability for providing confidence intervals for data. Such intervals were
observed to be essentially correct for high quantiles (the ones of interest) even if they were a
bit larger than optimal, of course a better situation than the alternative. We could even output a
correct confidence interval for high-order statistics (percentile), a task that would normally require
large-scale sampling of the outputs and would be impossible for Nek5000 when it needs high-end
resources for just one run, as it is often the case for some of its configurations.

At the moment we can make such positive statements only about the configuration we tested:
flow in a channel subject to geometric uncertainty. But should such observations hold for other
configurations and much more expensive calculations we could provide uncertainty results in
cases where it is difficult to see another way to do so. We note that for the case m = 20 we believe
we could have probably done considerably better by doing some form of component analysis
among the perturbations to reduce the dimension of the uncertainty space first and create three
levels of fidelity, as opposed to two; however, at the moment this is only an unproven hypothesis.

Our suggested scheme for lowering the cost of prediction even further through the use of
an intermediate regression function and/or component analysis is fairly complex and will need
additional investigation. It is nevertheless a remarkable demonstration of advanced uncertainty
analysis performed with a sample size smaller than the dimension of space.

Overall, uncertainty analysis on extremely small training sets augmented with large, lower-
quality calibrated data sets based on model reduction approaches in the context of industrial
codes is an ambitious new direction of development. Even now it is capable of producing model
assessments and diagnostics previously not available because of the prohibitive computational
cost.

6. Conclusions and future work

In our work, we have found that a Navier–Stokes model’s response to a moderate number of
geometric uncertain parameters can be effectively predicted by using a novel approach based on
sampling and calibrating a lower-fidelity POD-based model, with only a few high-fidelity data
points used in the calibration process. We have demonstrated the effectiveness of the approach on
a channel flow simulation performed by using the extreme-scale-ready code Nek5000.

Our suggested approach is computationally inexpensive and estimates the variability of the
uncertainty induced output well. In particular, high quantiles of the drag coefficient are correctly,
though sometimes conservatively, estimated. This type of result was not previously available
except at a significantly higher cost (and in effect not available at all for the more expensive
simulations).

We note that components of our approach are not new, and have received additional attention in
the recent decade. At the core of our work is a realization that it is possible to use reduced-order
modelling in analysis of uncertainty (without assuming a particular quality of the reduced-order
approximation) together with Bayesian characterization of lower-quality data. We operated in a
realistic situation of of scarcity of the computational budget and lack of external (perfect) sources
of data. In effect, we based our analysis only on examination of the same simulation code on
multiple levels of fidelity. For a simulation model that is very complex and expensive to evaluate,
this raised additional technical difficulties of access to the model’s structure for reduction, and of
consistency of introducing uncertainty into lower-fidelity and higher-fidelity codes.

We demonstrated that the approach is feasible on an advanced applied example, even when
using the most basic choices for model reduction and for Bayesian calibration. In future work,
we believe that it will become important to use lower-fidelity models that are not arbitrary, but,
rather, are constructed in a goal-oriented manner. With additional research, we should be able
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to adapt the adjoint-based procedure of controlling the error introduced by reduction. That will
allow us to achieve tighter confidence intervals.

In the long term, we plan to implement our approach as a part of uncertainty analysis for
the exascale nuclear engineering codesign project CESAR. The ultimate result will be improved
understanding of safety and operational margins of nuclear reactors and a streamlined licensing
process. However, the generalization power of the approach is unknown to us and needs more
work and answering questions along several directions. Theoretically, one would like to elucidate
under what circumstances and for what prediction functionals one can expect that the parametric
response itself can be well approximated by POD. Some tools to this end are provided in [15],
but this would be good to understand a priori on given physical applications such as Navier–
Stokes. The tools in [15] can be used, however, to produce a posteriori error estimates based on
adjoint calculations with the POD model only. Mixing such estimates with fewer high-fidelity
runs is a promising approach, in our opinion. There is also the issue we identified in the preceding
sections of using more approximation levels for a true multifidelity approach that would result
from using mean functions, as we did in [21], and by reducing the uncertainty space by some form
of component analysis. In terms of capability, we plan to run some very large three-dimensional
cases that need the highest-end resources; but our expectation, given the physics involved, is that
the same quality of the confidence intervals will be observed if geometric effects on drag are what
is quantified.

While such comprehensive validations and extensions are necessary, it is worth contemplating
what the technique will contribute asuming that its performance holds along these directions. The
distinguishing features of our work are reliance on a POD-reduced form of the model, one of
the least-difficult (in terms of development) intrusive techniques to implement, and a very cheap
and in principle convenient process of assigning a Gaussian-process-based characterization to the
imperfection of reduced data. Comparing this with the impossibility of non-intrusive sampling
assessments of codes that need computational resources on the limit of what is available for
point prediction. This technique, even if moderately successful, will help researchers carry out
uncertainty quantification for applications that need extreme-scale computing.
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